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Quantum field theory of a damped vibrating string as the simplest dissipative scalar
field is investigated by it’s coupling to an infinite number of Klein–Gordon fields
as the environment by introducing a minimal coupling method. Heisenberg equation
containing a dissipative term proportional to the velocity is obtained for a special
choice of coupling function and quantum dynamics for such a dissipative system is
investigated. Some kinematical relations is calculated by tracing out the environment
degrees of freedom. The rate of energy flowing between the system and it’s environment
is obtained.
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1. INTRODUCTION

In classical mechanics dissipation can be taken into account by introducing a
velocity dependent damping term into the equation of motion. Such an approach is
no longer possible in quantum mechanics where a time-independent Hamiltonian
implies energy conservation and accordingly we can not find a unitary time evo-
lution operator for both states and observable quantities consistently.

To investigate the quantum mechanical description of dissipative systems,
there are some treatments, one can consider the interaction between two systems
via an irreversible energy flow (Haken, 1975; Nicolis and Prigogine, 1977), or take
a phenomenological treatment for a time dependent Hamiltonian which describes
damped oscillations, here we can refer the interested reader to Caldirola–Kanai
Hamiltonian for a damped harmonic oscillator (Caldirola, 1941).

H (t) = e−2βt p2

2m
+ e2βt 1

2
mω2q2 (1)
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There are significant difficulties about the quantum mechanical solutions of
the Caldirola–Kanai Hamiltonian, for example quantizing with this Hamiltonian
violates the uncertainty relations or canonical commutation rules (Svinin, 1972)
and the uncertainty relations vanish as time tends to infinity.

In 1931, Bateman (1931) presented the mirror-image Hamiltonian which
consists of mirror Hamiltonians, one of them represents the main one-dimensional
damped harmonic oscillator. Energy dissipated by the main oscillator completely
will be absorbed by the other oscillator and thus the energy of the total system is
conserved. Bateman hamiltonian is given by

H = pp̄

m
+ β

2m
(x̄p̄ − xp) +

(
k − β2

4m

)
xx̄, (2)

with the corresponding Lagrangian

L = mẋ ˙̄x + β

2
(x ˙̄x − ẋx̄) − kxx̄, (3)

canonical momenta for this dual system can be obtained from this Lagrangian as

p = ∂L

∂ẋ
= m ˙̄x − β

2
x̄, p̄ = ∂L

∂ ˙̄x
= mẋ + β

2
x, (4)

dynamical variables x, p and p̄, x̄ should satisfy the commutation relations

[x, p] = i, [x̄, p̄] = i, (5)

however, the time-dependent uncertainty products obtained in this way, vanishes
as time tends to infinity.

Caldirola (1941, 1983) developed a generalized quantum theory of a linear
dissipative system in 1941: equation of motion of a single particle subjected to a
generalized non conservative force Q can be written as

d

dt

(
∂T

∂q̇

)
− ∂T

∂q
= −∂V

∂q
+ Q(q), (6)

where Qr = −β(t) ∂T
∂q̇r

= −β(t)
∑

arj q̇j , and arj ’s are some constants, changing
the variable t to t∗ using the following nonlinear transformation

t∗ = χ (t), dt = φ(t) dt∗, φ(t) = e− ∫ t

0 β(t ′)dt ′ , (7)

and from the definitions

q̇∗ = dq

dt∗
, L∗ = L(q, q̇∗, t∗), p∗ = ∂L∗

∂q̇∗ , (8)

the Lagragian equations (6) can be obtained from

d

dt∗

(
∂L∗

∂q̇∗

)
− ∂L∗

∂q
= 0, (9)
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Canonical commutation rule and Schrodinger equation in this formalism are

[q, p∗] = i, H ∗ψ = i
∂ψ

∂t∗
, (10)

where H ∗ = ∑
p∗q̇∗ − L∗. But unfortunately uncertainty relations vanish as time

goes to infinity.
Perhaps one of the effective approaches in quantum mechanics of dissipative

systems is the idea of considering an environment coupled to the main system and
doing calculations for the total system but at last for obtaining observables related
to the main system, the environment degrees of freedom must be eliminated. The
interested reader is referred to the Caldeira–Legget model (Caldeira and Legget,
1981, 1983). In this model the dissipative system is coupled with an environment
made by a collection of N harmonic oscillators with masses mn and frequencies
ωn, the interaction term in Hamiltonian is as follows

H ′ = −q

N∑
n=1

cnxn + q2
N∑

n=1

c2
n

2mnω2
n

, (11)

where q and xn denote coordinates of system and environment respectively and
the constants cn are called coupling constants.

The above coupling is not suitable for dissipative systems containing a dis-
sipation term proportional to velocity. In fact with above coupling we can not
obtain Heisenberg equation like q̈ + ω2q + βq̇ = ξ (t) for a damped harmonic os-
cillator consistently and we can not study dissipative quantum fields, for example,
a dissipative vibrating medium with this model. In this paper we generalize the
Caldeira–Legget model to an environment with continuous degrees of freedom
by a coupling similar to the coupling between a charged particle and the electro-
magnetic field known as minimal coupling. In Sections 2, the idea of a minimal
coupling is introduced and the quantum dynamics of a damped vibrating string as
the simplest scalar field theory, is investigated. In Section 3, quantum dynamics
of the string and it’s environment is investigated. In Section 4 some transition
probabilities indicating the way dissipation flows, are obtained.

2. QUANTUM DYNAMICS OF A DAMPED VIBRATING STRING

In this section we consider a damped vibrating string as the dissipative
system although the method is general and can be applied to a general scalar field.
Quantum mechanics of a damped vibrating string with mass density λ, tension µ

and length L, can be investigated by introducing a reservoir or an environment that
interacts with the string through a new kind of minimal coupling. Let the two ends
of the string be fixed in x = 0 and x = L respectively and vibration be only in
the y direction. If ψ(x, t) is the wave function of the string, to quantizing ψ(x, t),
we assume ψ(x, t) to be a hermitian operator and can be expanded in terms of
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orthogonal functions, sin nπx
L

as follows

ψ(x, t) =
∞∑

n=1

1√
Lλωn

[an(t) + a†
n(t)] sin

nπx

L
, (12)

where ωn =
√

µ

λ
nπ
L

and an and a
†
n are annihilation and creation operator of the

string respectively and satisfy in any instance of time the following commutation
rule

[an(t), a†
m(t)] = δnm, (13)

By definition of a conjugate canonical momentum density as

πψ (x, t) = i

∞∑
n=1

√
λωn

L
[a†

n(t) − an(t)] sin
nπ, x

L
(14)

then from (13) ψ , πψ satisfy equal time commutation relation

[ψ(x, t), πψ (x ′, t)] = iδ(x − x ′). (15)

Hamiltonian of string is defined by

Hs =
∫ L

0
dx

(
π2

ψ

2λ
+ 1

2
µψ2

x

)
=

∞∑
n=1

ωn

(
a†

nan + 1

2

)
(16)

Let the total Hamiultonian, i.e., string plus environment be like this

H (t) =
∫ L

0
dx

(πψ (x, t) − R(x, t))2

2λ
+ 1

2
µψ2

x + HB, (17)

where ψx denotes derivative with respect to x and µ is a constant depending on
string properties, HB is the reservoir Hamiltonian

HB(t) =
∞∑

n=1

∫ +∞

−∞
d3kω�k

(
b
†
n�k(t)bn�k(t) + 1

2

)
, ω�k = |�k|. (18)

Annihilation and creation operators bn�k , b
†
n�k , in any instant of time, satisfy the

following commutation relations

[bn�k(t), b†
m�k′(t)] = δnmδ(�k − �k′), (19)

and we will show later in Section 3 that reservoir is an infinite number of indepen-
dent Klein–Gordon equations with a source term. Operator R(x, t) have the basic
role in interaction between string and reservoir and is defined by

R(x, t) =
∞∑

n=1

∫ +∞

−∞
d3k[f (ω�k)bn�k(t) + f ∗(ω�k)b†

n�k(t)] sin
nπx

L
, (20)
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let us call the function f (ωk), the coupling function. Using (15), it can be shown
easily that Heisenberg equation for ψ(x, t) and πψ (x, t) leads to

ψ̇(x, t) = i[H,ψ(x, t)] = πψ − R

λ
,

(21)
π̇ψ (x, t) = i[H,πψ (x, t)] = µψxx,

which after eleminating πψ , gives the following equation for the damped vibrating
string

λψ̈ − µψxx = −Ṙ(x, t). (22)

Using (19) the Heisenberg equation for bn�k , is

ḃn�k = i[H, bn�k] = −iω�kbn�k + if ∗(ω�k)
∫ L

0
ψ̇(x ′, t) sin

nπx ′

L
dx ′, (23)

with the following formal solution

bn�k(t) = bn�k(0)e−iω�k t + if ∗(ω�k)
∫ t

0
dt ′e−iω�k (t−t ′)

∫ L

0
ψ̇(x ′, t ′) sin

nπx ′

L
dx ′,

(24)

substituting bn�k(t) from (24) into (22), using the relation δ(x − x ′) =
2
L

∑∞
n=1 sin nπx

L
sin nπx ′

L
and at last integrating over x ′ gives

λψ̈ − µψxx +
∫ t

0
dt ′ψ̇(x, t ′)γ (t − t ′) = ξ (x, t),

ξ (x, t) = i

∫ +∞

−∞
d3kω�k[f (ω�k)bn�k(0)e−iω�k t − f ∗(ω�k)b†

n�k(0)eiω�k t ] sin
nπx

L
,

γ (t) = 4πL

∫ ∞

0
dω�k|f (ω�k)|2ω3

�k cos ω�kt, (25)

it is clear that the expectation value of ξ (x, t) in any eigenstate of HB , is zero. For
the following special choice of coupling function

f (ω�k) =
√

β

4π2Lω3
�k
, (26)

Equation (25) takes the form

λψ̈ − µψxx + βψ̇ = ξ̃ (x, t),

ξ̃ (x, t) = i

√
β

4π2L

∫ +∞

−∞

d3k√
ω�k

[bn�k(0)e−iω�k t − b
†
n�k(0)eiω�k t ] sin

nπx

L
, (27)
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Heisenberg equation for an and a
†
n is

ȧn + ȧ
†
n√

Lλωn

= i

√
ωn

Lλ
(a†

n − an) − 1

λ

∫ +∞

−∞
d3k[f (ω�k)bn�k(t) + f ∗(ω�k)b†

n�k(t)],

i

√
λωn

L
(ȧ†

n − ȧn) = −λω2
n

(a†
n + an)√
λLωn

. (28)

Definition An = an+a
†
n√

Lλωn
and Bn = i

√
λωn

L
(a†

n − an) and using (26), we can easily
obtain

Än + ω2
nAn + β

λ
Ȧn = ζn(t),

ζn(t) = i

√
β

4π2λ2L

∫ +∞

−∞

d3k√
ω�k

[bn�k(0)e−iω�k t − b
†
n�k(0)eiω�k t ], (29)

with the following solution

An(t) = e− βt

2λ (Êne
int + F̂ne

−int ) + Mn(t),

Mn(t) = i

∫ +∞

−∞
d3k

√
β

4π2λ2Lω�k

[
bn�k(0)

ω2
n − ω2

�k − i
β

λ
ω�k

e−iω�k t

−
b
†
n�k(0)

ω2
n − ω2

�k + iβ

λ
ω�k

eiω�k t

]
,

(30)

where n =
√

ω2
n − β2

4λ2 . Operators Ên and F̂n, are specified by initial conditions

Ên + F̂n = An(0) − Mn(0),(−β

2λ
+ in

)
Ên −

(
β

2λ
+ in

)
F̂n = Ȧn(0) − Ṁn(0), (31)

solving above equations and substituting Ên and F̂n in (30) one obtains

An(t) = e− βt

2λ

{
An(0) cos nt + β

2λn

An(0) sin nt − βMn(0)

2λn

sin nt

− Mn(0) cos nt + Ȧn(0) − Ṁn(0)

n

sin nt

}
+ Mn(t). (32)

It is clear from (28) that Ȧn(0) is dependent on string and reservoir operators in
t = 0 . Substituting Ȧn(t) from (32) in (24) we can find a stable solution for bn�k(t)
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in t → ∞ as

bn�k(t) = bn�k(0)e−iω�k t − i

√
Lβ

16π2ω3
�k

e−iω�k t

(ω2
n − ω2

�k − iβ

λ
ω�k){

ω2
nAn(0) − ω2

nMn(0) + iω�k(Ȧn(0) − Ṁn(0))
}

+ iβ

8π2λ
√

ω3
�k

∫ +∞

−∞
d3k′√ω �k′

{
bn �k′ (0)

ω2
n − ω2

�k′ − iβ

λ
ω �k′

sin
(ω�k−ω �k′ t)

2 t

(ω�k−ω �k′ )
2

e
−i(ω�k+ω �k′ )t

2

+
b
†
n �k′(0)

ω2 − ω2
�k′ + iβ

m
ω �k′

sin
(ω�k+ω �k′ )

2 t

(ω�k+ω �k′ )
2

e
i(ω �k′ −ω�k )t

2

}
, (33)

now substituting bn�k(t) from (33) in (28) and using (32), one can obtain operator
Bn(t)

Bn(t) = λȦn(t) +
∞∑

n=1

∫ +∞

−∞
d3k

√
β

4π2Lω3
�k
[bn�k(t) + b

†
n�k(t)). (34)

A vector in fock space of string can be written like this

|�〉s =
∞∑

j=0

∞∑
n1,...,nj =1

�n1,...,nj
|n1〉s ⊗ · · · ⊗ |nj 〉s (35)

where |n〉s denotes the state of a single particle in mode n, with corresponding

wave function 〈x|n〉 =
√

2
L

sin nπx
L

. Operators an(0) and a
†
n(0) act on basis vectors

|n1〉s ⊗ · · · ⊗ |nj 〉s ≡ |n1, . . . , nj 〉s as follows

am(0)|n1, . . . , nj 〉s =
j∑

r=1

δnr ,m|n1, . . . , nr−1, nr+1, . . . , nj 〉s ,

a†
m(0)|n1, . . . , nj 〉s = |m, n1, . . . , nj 〉s , (36)

also a vector in fock space of reservoir can be written as

|�〉B =
∞∑

j=0

∞∑
ν1,...,νj =1

∫
d3k1 . . . d3kj�n1,...,nj

(�k1, . . . , �kj )

× |�k1, ν1〉B ⊗ · · · ⊗ |�kj , νj 〉B. (37)

In subsequent section we show that reservoir is infinite number of independent
Klein–Gordon fields and we can interpret |�k, ν〉B as a single particle state belong
to νth Klein–Gordon field with corresponding momentum, �k. Operators bn�q(0) and
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b
†
n�q(0) act on basis vectors |�k1, ν1〉B ⊗ · · · ⊗ |�kj , νj 〉B ≡ |�k1, ν1, . . . , �kj , νj 〉B as

bn�q(0)|�k1, ν1, . . . , �kj , νj 〉B

=
j∑

r=1

δn,νr
δ(�q − �kr )|�k1, ν1, . . . �kr−1, νr−1, �kr+1, νr+1, . . . , �kj , νj 〉B,

b
†
n�q(0)|�k1, ν1, . . . , �kj , νj 〉B = |�q, n, �k1, ν1, . . . , �kj , νj 〉B. (38)

If the state of system in t = 0 is taken to be |ψ(0)〉 = |0〉B ⊗ |m1, . . . mr〉s
where |0〉B is vacuum state of reservoir and |m1, . . . mr〉s an excited state of
the Hamiltonian Hs then by making use of (32), (33), and (34) it can be shown that

limt→∞[B〈0| ⊗ s〈m1, . . . , mr | :
∫ L

0
dx

[
1

2
λψ̇2 + 1

2
µψ2

x

]
: |m1, . . . , mr〉s ⊗ |0〉B] = 0,

limt→∞

[
B〈0| ⊗ s〈m1, . . . , mr | :

∞∑
n=1

ωna
†
n(t)an(t) : |m1, . . . , mr〉s ⊗ |0〉B

]

= limt→∞

{ ∞∑
n=1

Lβ2ω4
n

16π2λ

∣∣∣∣∣
∫ +∞

−∞

dx

x

eixt

ω2 − x2 + i
β

λ
x

∣∣∣∣∣
2

× s〈mr, . . . m1| : A2
n(0) : |m1, . . . mr〉s

}
� β2

8λ2

r∑
i=1

1

ωmi

. (39)

where : : denotes the normal ordering operator. Now by substituting bn�k(t) from
(33) into (18), we have

limt→∞

[
B〈0| ⊗ s〈mr, . . . , m1| :

∫
d3k

∞∑
n=1

ω�kb
†
n�kbn�k : |m1, . . . mr〉s ⊗ |0〉B

]

= β

2πλ

r∑
i=1

ω3
mi

∫ ∞

0

dx(
ω2

mi
− x2

)2 + β2

λ2 x2
,

+ β

2πλ

r∑
i=1

ωmi

∫ ∞

0

x2dx(
ω2

mi
− x2

)2 + β2

λ2 x2
. (40)
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3. QUANTUM FIELD OF RESERVOIR

Let us define the operators Yn(�x, t) and �n(�x, t) as follows

Yn(�x, t) =
∫ +∞

−∞

d3k√
2(2π )3ω�k

(
bn�k(t)ei�k.�x + b

†
n�k(t)e−i�k.�x),

�n(�x, t) = i

∫ +∞

−∞
d3k

√
ω�k

2(2π )3

(
b
†
n�k(t)e−i�k.�x − bn�k(t)ei�k.�x), (41)

then using commutation relations (19), one can show that Yn(�x, t) and �m(�x, t),
satisfy the equal time commutation relations

[Yn(�x, t),�m( �x ′, t)] = iδnmδ(�x − �x ′), (42)

furthermore by substituting bn�k(t) from ( 24) in (41) we obtain

∂�n(�x, t)

∂t
= ∇2Yn + LȦn(t)P (�x),

P (�x) = Re
∫ +∞

−∞
d3k

√
ω�k

2(2π )3
f (ω�k)e−i�k.�x,

�n(�x, t) = ∂Yn

∂t
− LȦn(t)Q(�x), Q(�x) = Im

∫ +∞

−∞
d3k

f (ω�k)√
2(2π )3ω�k

e−i�k.�x,

(43)

so for any n, Yn(�x, t) satisfies the following source included Klein–Gordon
equation

∂2Yn

∂t2
− ∇2Yn = LÄn(t)Q(�x) + 2Ȧn(t)P (�x), (44)

with the corresponding Lagrangian density as follows

£n = 1

2

(
∂Yn

∂t

)2

− 1

2
�∇Yn. �∇Yn − LȦnQ(�x)

∂Yn

∂t
+ LȦnP (�x)Yn. (45)

It is clear that the reservoir is made by an infinite number of massless Klein–Gordon
fields containing the source term 2ÄnQ(�x) + 2ȦnP (�x). Hamiltonian density for
(44) is

ℵn = (�n + LȦnQ)2

2
+ 1

2
| �∇Yn|2 − LȦnP ( �x,)Yn, (46)

and Equations (43) are Heisenberg equations for fields Yn and �n. If we obtain
bn�k and b

†
n�k from (41) in terms of Yn and �n and substitute them in (18), we find

HB =
∫ +∞

−∞
d3kω�k

(
b
†
n�kbn�k + 1

2

)
= �2

n

2
+ 1

2
| �∇Yn|2. (47)
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4. TRANSITION PROBABILITIES

We can write the Hamiltonian (20) as

H = H0 + H ′,

H0 = Hs + HB =
∞∑

n=1

(
a†

nan + 1

2

)
ωn +

∞∑
n=1

∫ ∞

−∞
d3kω�k

(
b
†
n�kbn�k + 1

2

)

H ′ = −
∫ L

0
dx

πψ (x, t)

λ
R(x, t) + R2(x, t)

2λ
, (48)

and in interaction picture we can write

anI (t) = eiH0t an(0)e−iH0t = an(0)e−iωnt ,

bn�kI (t) = eiH0t bn�k(0)e−iH0t = bn�k(0)e−iω�k t , (49)

terms R
λ
πψ and R2

2λ
are of the first order and second order of damping respectively,

therefore for sufficiently weak damping, R2

2λ
is small in comparison with R

λ
πψ .

Furthermore, R2

2λ
has not any role in those transition probabilities where initial and

final states of Hamiltonian of vibrating string are different, hence we can neglect
the term R2

2λ
and estimate H ′ by −R

λ
πψ . Substituting anI and bn�kI from (49) into

−R
λ
πψ , one obtains H ′

I in interaction picture, as

H ′
I = − iL

2λ

∞∑
n=1

√
λωn

L

∫ +∞

−∞
d3k(f (ω�k)a†

n(0)bn�k(0)ei(ωn−ω�k)t

+ f ∗(ω�k)a†
n(0)b†

n�k(0)ei(ωn+ω�k)t − f (ωk)an(0)bn�k(0)e−i(ω�k+ωn)t

−f ∗(ω�k)an(0)b†
n�k(0)ei(ω�k−ωn)t ), (50)

terms containing just an(0)bn�k(0) and a
†
n(0)b†

n�k(0) violate the conservation of en-
ergy in the first order perturbation, because an(0)bn�k(0) destroys an excited state of
string while at the same time destroying a reservoir excitation state and a

†
n(0)b†

n�k(0)
creates an excited state of vibrating string, while creating an excited reservoir
state at the same time, therefore we neglect the terms involving an(0)bn�k(0) and
a
†
n(0)b†

n�k(0), because of energy conservation and estimate H ′
I by

H ′
I = − i

2

√
L

λ

∞∑
n=1

∫ +∞

−∞
d3k

√
ωn

[
f (ω�k)a†

n(0)bn�k(0)ei(ωn−ω�k)t

−f ∗(ω�k)an(0)b†
n�k(0)e−i(ωn−ω�k)t

]
. (51)
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The time evolution of density operator in interaction picture is as follows (Scully
and Zubairy, 1997)

ρI (t) = UI (t, t0)ρI (t0)U †
I (t, t0), (52)

where UI is the time evolution operator, which in first order perturbation is

UI (t, t0 = 0) = 1 − i

∫ t

0
dt1H

′
I (t1)

= 1 − 1

2

√
L

λ

∫ +∞

−∞
d3k

∞∑
n=1

√
ωn

[
f (ω�k)a†

n(0)bn�k(0)e
i(ωn−ω�k )t

2

−f ∗(ω�k)an(0)b†
n�k(0)e

−i(ωn−ω�k )t

2

]
sin (ωn−ω�k)

2 t

(ωn−ω�k)
2

. (53)

Let ρI (0) = |m, . . . , m〉rs r
s〈m, . . . , m| ⊗ |0〉B B〈0| where |0〉B is the vacuum

state of reservoir and |m, . . . , m〉rs is an excited state of vibrating string, from
now on by |m, . . . , m〉rs , we mean a string state containing r phonons of mode m,
substituting UI (t, 0) from (53) in (52) and taking trace over reservoir parameters,
we obtain

ρsI (t) : = TrB(ρI (t)) = |m, . . . , m〉rs r
s〈m, . . . , m|

+ rLωm

4λ
|m, . . . , m〉r−1

s
r−1
s 〈m, . . . , m|

∫ +∞

−∞
d3p|f (ω �p)|2 sin2 (ω �p−ωm)

2 t

(ω �p−ωm

2 )2
,

(54)

where we have used the formula TrB[|�k, n〉B B〈 �k′, s|] = δnsδ(�k − �k′). In large
time approximation, we can write sin2 (ω �p−ωm)

2 t/(ω �p−ωm

2 )2 = 2πtδ(ω �p − ωm),
which leads to the following relation for density matrix

ρsI (t) = |m, . . . , m〉rs r
s〈m, . . . , m| + 2Lπ2ω3

mrt |f (ωm)|2
λ

× |m, . . . , m〉r−1
s

r−1
s 〈m, . . . , m|, (55)

from density matrix we can calculate the probability of transition |m, . . . , m〉rs →
|m, . . . , m〉r−1

s as

�|m,...,m〉rs→|m,...,m〉r−1
s

= Tr[|m, . . . , m〉r−1
s

r−1
s 〈m, . . . , m|ρ(t)]

= Trs[|m, . . . , m〉r−1
s

r−1
s 〈m, . . . , m|ρsI (t)] = 2rLπ2ω3

mrt |f (ωm)|2
λ

, (56)
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where Trs means taking trace over string eigenstates. For the special choice (26),
above transition probability becomes

�|m,...,m〉rs→|m,...,m〉r−1
s

= rβt

2λ
, (57)

which shows that the rate of phonon number reduction (energy flow), is constant.
Now consider the case where the reservoir is an excited state in t = 0 for example
ρI (0) = |m, · · · ,m〉rs r

s〈m, · · · ,m| ⊗ |1ν1, �p1 , 1ν2, �p2 , . . . , 1νj , �pj
〉B B〈1ν1, �p1 , 1ν2, �p2 ,

. . . , 1νj , �pj
| where | �p1, ν1 . . . �pj , νj 〉B denotes a reservoir state containing j quanta

with momenta �p1, . . . , �pj belonging to the ν1,ν2,. . . ,νj th, Klein–Gordon field,
respectively then by making use of

TrB[b†
n�k| �p1, ν1 . . . �pj , νj 〉B B〈 �p1, ν1 . . . �pj , νj |bm �k′] = δnmδ(�k − �k′),

TrB[bn�k| �p1, ν1 . . . �pj , νj 〉B B〈 �p1, ν1 . . . �pj , νj |b†
m �k′]

=
j∑

l=1

δn,νl
δm,νl

δ(�k − �pl)δ( �k′ − �pl), (58)

for m �= ν1 · · · νj , we find

ρsI (t) = |m, · · · ,m〉rs r
s〈m, · · · ,m| +

+ rLωm

4λ
|m, · · · ,m〉r−1

s
r−1
s 〈m, · · · ,m|

∫ +∞

−∞
d3k|f (ω�k)|2 sin2 (ω�k−ωm)

2 t(
ω�k−ωm

2

)2

+ L

4λ

j∑
r=1

ωνr
|νr〉s ⊗ |m, · · · ,m〉rs s〈νr | ⊗ r

s〈m, · · · ,m||f (ω �pr
)|2 sin2 (ω �pr −ωνr )

2 t(
ω �pr −ωνr

2

)2

(59)

which gives the transition probability for |m, . . . , m〉rs → |m, . . . , m〉r−1
s and

|m, . . . , m〉rs → |ν,m, . . . , m〉rs , respectively, as follows

�|m,...,m〉rs→|m,...,m〉r−1
s

= 2π2Lω3
mrt

λ
|f (ωm)|2,

�|m,...,m〉rs→|ν〉s⊗|m,...,m〉s = πLων |f (ων)|2t
2λ

j∑
r=1

δν,νr
δ(ω �pr

− ων). (60)

For the choice (26), we find

�|m,···,m〉rs→|m,···,m〉r−1
s

= rβt

λ
,
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�|m,···,m〉rs→|ν〉s⊗|m,···,m〉s = βt

4πλω2
ν

j∑
r=1

δν,νr
δ(ω �pr

− ων). (61)

Another important case is when the reservoir has a Maxwell–Boltzman
distribution, so let ρI (0) = |m, . . . , m〉rs r

s〈m, . . . , m| ⊗ ρT
B where ρT

B =
e

−HB
KT

/
T RB(e

−HB
KT ), then by making use of following relations

T rB

[
bn�kρ

T
B bm �k′

] = T rB[b†
n�kρ

T
B b

†
m �k′] = 0,

T rB

[
bn�kρ

T
B b

†
m �k′

] = δnmδ(�k − �k′)

e
ω�k
KT − 1

,

T rB

[
b
†
n�kρ

T
B bm �k′

] = δnmδ(�k − �k′)
e

ω�k
KT

e
ω�k
KT − 1

, (62)

we can obtain the density operator ρsI (t) in interaction picture as

ρsI (t) := T rB[ρI (t)] = |m, · · · ,m〉rs r
s〈m, · · · ,m|

+ L

4λ

∑
n�=m

ωn{|n〉s |m, · · · ,m〉rs s〈n| r
s〈m, · · · ,m|

×
∫ +∞

−∞
d3k

|f (ω�k)|2
e

ω�k
KT − 1

sin2 (ω�k−ωn)
2 t(

ω�k−ωn

2

)2 }

+ rLωm

4λ
|m, · · · ,m〉r−1

s
r−1
s 〈m, · · · ,m|

∫ +∞

−∞
d3k

|f (ω�k)|2e
ω�k
KT

e
ω�k
KT − 1

sin2 (ω�k−ωm)
2 t(

ω�k−ωm

2

)2

+ (r + 1)Lωm

4λ
|m, · · · ,m〉r+1

s
r+1
s 〈m, · · · ,m|

∫ +∞

−∞
d3k

|f (ω�k)|2
e

ω�k
KT − 1

sin2 (ω�k−ωm)
2 t(

ω�k−ωm

2

)2 ,

(63)

which accordingly gives the following transition probabilities in long time
approximation

�|m,···,m〉rs→|m,···,m〉r−1
s

= 2π2Lω3
mr|f (ωm)|2t

λ

e
ωm
KT

e
ωm
KT − 1

,

�|m,···,m〉rs→|ν〉s⊗|m,···,m〉rs = 2π2Lω3
ν t |f (ων)|2

λ(e
ων
KT − 1)

ν �= m

�|m,···,m〉rs→|m,···,m〉r+1
s

= (r + 1)2π2Lω3
mt |f (ωm)|2

λ(e
ωm
KT − 1)

(64)
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substituting (26) in these recent relations, we find

�|m,···,m〉rs→|m,···,m〉r−1
s

= rβt

λ

e
ωm
KT

e
ωm
KT − 1

,

�|m,···,m〉rs→|ν〉s⊗|m,···,m〉rs = βt

λ(e
ων
KT − 1)

ν �= m

�|m,···,m〉rs→|m,···,m〉r+1
s

= (r + 1)βt

λ(e
ωm
KT − 1)

. (65)

So in very low temperatures the energy flows from oscillator to the reservoir by
the rate β

2λ
and no energy flows from reservoir to oscillator.

5. CONCLUDING REMARKS

The Caldeira–Legget model generalized to the case where the environment
has continuous degrees of freedom, for example, a Klein–Gordon field or an
infinite number of Klein–Gordon fields. A minimal coupling method introduced
which leads to a consistent investigation of the quantum dynamics of a large class
of quantum dissipative systems. By choosing different coupling functions in (20),
we could investigate another forms of dissipation. The rate of energy dissipation
(energy flowing between the system and it’s environment), was a constant. This
problem can be extended to the case where the field R, becomes a general field
for example a vector field, which is suitable for investigating three-dimensional
quantum dissipative models.
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